

Computerised One Time Pads
From Telecomix Crypto Munitions Bureau

The one time pad cipher is arguably one of the most simple ciphers. The cipher is
completely unbreakable by means of logics. Computers can not crack it. The only
known method to find the correct keys is through torture. As torture is one form of
cryptanalysis (its called "rubber hose cryptanalysis") we could if we want say that this
cipher is in fact breakable.

Notice that remote key exchange over an unsecure network is not possible. ONLY
exchange cipherkeys directly with the person you wish to communicate with.

If you ever plan on using the OTP cipher, you really need to make sure that you
completely understands it. It is simple to make mistakes!

Contents

• 1 One Time Pad (OTP)
• 2 Known attacks against OTP
• 3 Software implementing OTP
• 4 TCMB manuals for manual and semi-manual OTP-cryptography

o 4.1 Generating keys for the OTP cipher
o 4.2 Usage:
o 4.3 Encrypting with the OTP cipher
o 4.4 Example usage

• 5 Performing OTP cryptography by hand
o 5.1 Description of the code used
o 5.2 Alphabetizer

One Time Pad (OTP)

"In cryptography, the one-time pad (OTP) is a type of encryption, which has been
proven to be impossible to crack if used correctly." - wikipedia so it must be true!

One time pad is likely the most simple form of cryptoalgoritm. A key is generated and
shared between two peers that wish to communicate with each other. The key must be
equally long as the message that is sent. The key must also be transmitted in person or
via a sneakernet of completely trusted couriers. (If you send the key to your peer with
another crypto, OTP will be just as secure as the crypto used to transmit the key. Do
not rely on other ciphers, the chain is just as secure as its weakest link. Do not
transmit the keys with any other means than sneakernet.)

Known attacks against OTP

• Rubber hose cryptoanalysis

o Countermeasure: Usage of hidden channels to inform the receiving
agent that you are under attack. A hidden channel can easily be
constructed by carefully avoiding a cleartext symbol, such as "b".
Whenever a message is found to contain the letter "b" after decryption,
it should then be assumed that the sending agent is compromized. To
save your friend from further subjection to the rubber hose, it is
advised that you pretend that no hidden channel exist and play along
with the capturers while you think of a plan to rescue your friend.
More elaborate schemes can of course be constructed.

Software implementing OTP

• Plugin for Pidgin Pidgin-Paranoia

TCMB manuals for manual and semi-manual OTP-
cryptography

Everything below is probably only interesting for computer nerds :-)

Generating keys for the OTP cipher

The following script (called otpgrb) can be used to generate keys.

#!/bin/sh
dd bs=1 count=$1 if=/dev/random of=$2

Usage:

otpgrb 512 my-key

will generate a 512 byte long random number and put it in the file my-key. Be sure to
use a computer with an encrypted hard drive, or use a RAM file system, if you suspect
that your computer could ever end up in the hands of others. If you are using
OpenBSD you need to exchange /dev/random with /dev/srandom.

Encrypting with the OTP cipher

xor is a C program that xors the input from stdin with a given file, byte after byte, and
presents the output to stdout. The syntax is: "./xor key ". If you do not want strange
stuff written to your screen, you could type something like "./xor key <

cleartext > ciphertext ".

#include <stdio.h>

int main(int argv, char *argc[]){
 FILE *seed;
 int c, d;

 seed = fopen(argc[1], "r");

 c = getchar();
 d = fgetc(seed);

 while(c != -1 && d != -1){
 putchar((char) c^d);
 d = fgetc(seed);
 c = getchar();
 }
}

To compile it: "gcc xor.c -o xor".

Example usage

Generating a key:

./otpgrb 128 key
128+0 records in
128+0 records out
128 bytes (128 B) copied, 0.00399996 s, 32.0 kB/s
hd key
00000000 39 ba 42 2f 6d 05 f0 92 a7 6c 52 7b 95 e b 93 ac
|9.B/m....lR{....|
00000010 63 93 10 e8 d9 a1 6c 02 6c 76 40 7c 82 4 0 9c 7f
|c.....l.lv@|.@..|
00000020 3b a2 b0 25 32 aa 20 5c fa c5 8e 36 c5 d 9 b8 22 |;..%2.
\...6..."|
00000030 a9 1c 36 28 40 89 f9 bb d1 8c a9 06 eb 8 8 50 b1
|..6(@.........P.|
00000040 cf 88 4d 64 4d 85 b9 7f 1a c6 72 98 29 0 2 2c 3d
|..MdM.....r.).,=|
00000050 1c e5 46 c1 42 dc c8 21 60 12 f3 e5 e7 b b 0a d7
|..F.B..!`.......|
00000060 3f ca 6c c8 39 06 ce de f8 b9 a8 27 92 e b c6 dc
|?.l.9......'....|
00000070 68 f2 c5 c0 44 a4 48 8f f9 38 ce bc 84 0 5 73 0d
|h...D.H..8....s.|
00000080

After you have generated your key, you need to give it to the person whom which you
wish to communicate with in the future. Put the key on an USB stick and deliver it to
your friend.

To encrypt messages, you need to xor the plaintext with the OTP key:

echo Lets kill the king\! The revolution is here\ ! > cleartext
./xor key < cleartext > ciphertext
shred cleartext
rm cleartext
history -c
hd ciphertext
00000000 75 df 36 5c 4d 6e 99 fe cb 4c 26 13 f0 c b f8 c5
|u.6\Mn...L&.....|

00000010 0d f4 31 c8 8d c9 09 22 1e 13 36 13 ee 3 5 e8 16
|..1...."..6..5..|
00000020 54 cc 90 4c 41 8a 48 39 88 a0 af 3c
|T..LA.H9...<|
0000002c

Once your friend has received the key and the ciphertext, it is possible to decipher the
message. To decrypt the ciphertext:

./xor key < ciphertext > cleartext
cat cleartext
Lets kill the king! The revolution is here!

Once a key has been used, it should NEVER again be used. Both you and your friend
should throw it away. If you reuse the key, the cipher is extremely vulnerable.
However, if you never reuse the keys, it is not possible to crack the cipher with any
known methods ;)

Performing OTP cryptography by hand

If the field agents memorize the coding scheme and keep numbered records of OTP-
keys it is possible to perform the computations needed for perfectly secure
communication by hand.

The cipher is very simple. Just generate a random sequence of [a-z][1-6]-symbols (32
symbols) and save them as your key. When you encrypt a message, just shift the clear
text left equal to the position in the alphabet of the key (a = 0 shifts left, b = 1 shifts
left, etc.). Do this symbol by symbol until you reach the end of the message.
Decryption works exactly the same, but in reverse.

Generate randomness by collecting binary sequences from /dev/random (linux) or
/dev/srandom (OpenBSD). Use the otpgrb script to do this. Then xor the random
blocks that have been generated (possibly at different machines at different times) to
generate a new binary random sequence. This sequence could then be fed to
alphabetize (see below) to create an standard human readable form of the key. If the
field agent writes this key down, it is possible to perform the rest of the calculations
with only a brain, a paper and a pen.

Description of the code used

This table is very useful if you want to use the encryption scheme without a computer.
TCMB field agents should have printouts of it in their cipherbooks, along with the
numbered OTP-keys.

 abcdefghijklmnopqrstuvxyz123456

a abcdefghijklmnopqrstuvxyz123456
b bcdefghijklmnopqrstuvxyz123456a
c cdefghijklmnopqrstuvxyz123456ab
d defghijklmnopqrstuvxyz123456abc

e efghijklmnopqrstuvxyz123456abcd
f fghijklmnopqrstuvxyz123456abcde
g ghijklmnopqrstuvxyz123456abcdef
h hijklmnopqrstuvxyz123456abcdefg
i ijklmnopqrstuvxyz123456abcdefgh
j jklmnopqrstuvxyz123456abcdefghi
k klmnopqrstuvxyz123456abcdefghij
l lmnopqrstuvxyz123456abcdefghijk
m mnopqrstuvxyz123456abcdefghijkl
n nopqrstuvxyz123456abcdefghijklm
o opqrstuvxyz123456abcdefghijklmn
p pqrstuvxyz123456abcdefghijklmno
q qrstuvxyz123456abcdefghijklmnop
r rstuvxyz123456abcdefghijklmnopq
s stuvxyz123456abcdefghijklmnopqr
t tuvxyz123456abcdefghijklmnopqrs
u uvxyz123456abcdefghijklmnopqrst
v vxyz123456abcdefghijklmnopqrstu
x xyz123456abcdefghijklmnopqrstuv
y yz123456abcdefghijklmnopqrstuvx
z z123456abcdefghijklmnopqrstuvxy
1 123456abcdefghijklmnopqrstuvxyz
2 23456abcdefghijklmnopqrstuvxyz1
3 3456abcdefghijklmnopqrstuvxyz12
4 456abcdefghijklmnopqrstuvxyz123
5 56abcdefghijklmnopqrstuvxyz1234
6 6abcdefghijklmnopqrstuvxyz12345

It is a simple tabula recta for the 32 symbol long alphabet we use. The number 32 was
chosen because it is a nice exponent of 2 and because it is probably the last such
exponent that is easily usable by humans. A 64 symbol long alphabet would have
generated a 4 times larger table; 2 times larger in both horizontal and vertical length.
On the other hand, 16 symbols would add complexity because there are obviously
more letters in most human alphabets.

The convention is to replace the symbols 1-6 with whatever you think is more needed.
Such as space, lol :)

The left-most column is the key. For each symbol that you are going to encrypt or
decrypt, find the random key in this column. The top-most row is the clear text.
When you encrypt, the clear text is known. When you decrypt, the clear text is what
should appear when you decrypt a crypto text. All symbols in the table are used to
garble the clear text into crypto text, or the other way around, using the key.

Encryption: Find the key in the left-most column. Then find the clear text-symbol in
the top-most row. Go straight down from the clear text-symbol to the row where the
key is. The letter you find here is the crypto text-symbol. Write it down and continue
with the next symbol you want to encrypt. Example: You want to encrypt the symbol
F with the key 2. A is then the crypto text-symbol.

Decryption: Find the key in the left-most column. Go straight to the right from this
point to the crypto text-symbol. When you find it, go straight up. When you reach the
"clear text"-row at the very top, you will find the clear text symbol. Example: The
key is D, the ciphersymbol is K. Then the clear text-symbol is H.

Alphabetizer

Recodes binary input to our alphabet and outputs the ASCII.

Usage:

• Syntax: alphabetizer [human]
o if you supply "human" as argument 1, it will write the output in nice

16-symbol wide rows and give an ending newline.
• XF-OTP-STD0 compatible: It throws away the 3 most significant bits in

each byte during recoding. At output it maps the alphabet to the ASCII letters
[a-z] and [1-6]. Reads from stdin until EOF and writes to stdout. (Notice that
XF-OTP-STD0 is a deprecated coding scheme. This does however not weaken
the security of the cipher.)

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>

char alphabetize(int byte)
{
 /*
 The alphabet we are using is 32 characters l ong:
 abcdefghijklmnopqrstuvwxyz123456
 */

 if(byte >= 32)
 {
 fprintf(stderr, "Internal program error.\n");
 exit(-1);
 }

 if(byte < 26)
 {
 return((char) byte + 'a');
 }
 else if(byte == 26) return('1');
 else if(byte == 27) return('2');
 else if(byte == 28) return('3');
 else if(byte == 29) return('4');
 else if(byte == 30) return('5');
 else if(byte == 31) return('6');

}

int main(int argv, char *argc[]){
 int byte;
 int i = 0;
 bool human = false;

 if(argv > 1)
 {
 if(argv > 2)
 {
 fprintf(stderr, "Too many arguments.\n");
 exit(1);
 }
 if(!strcmp(argc[1], "human"))

 {
 fprintf(stderr, "Using human readable form at.\n");
 human = true;
 }
 else
 {
 fprintf(stderr, "Unrecognized argument.\n");
 exit(1);
 }
 }

 byte = getchar();

 while(byte != -1)
 {

 if(human && i == 16)
 {
 /* we want 16 letter long rows if we are h umans */
 i=0;
 putchar('\n');
 }

 byte &= 0x1F;
 putchar(alphabetize(byte));
 i++;

 byte = getchar();
 }
 if(human) putchar('\n');
}

ONE-TIME IMAGE
One-Time Image is a program written in Java to encrypt images using the principle
of the one-time pad to create a pair of black and white images. Each appears as a
'snow' of black and white pixels, and no information can be extracted from either
image on its own - unlike most cryptography, it is not merely 'very difficult' to extract
information: an implementation of the one-time image principle with true random
numbers is *perfectly* secure and unbreakable (in practise this program uses the
default Java random number generator, and so isn't absolutely secure - information is
provided in the source code on how to add your own random number generator if you
want to make it so).

However, despite the fact that no information can be retrieved from either image on
its own, if both are printed onto transparencies and one is laid directly over the other,
the original image will immediately and clearly appear. One-Time Image is free and
open-source - you can get the program and source code here.

HOW DOES IT WORK?

The principle of the one-time pad was developed during World War One, though it
was 25 years before a mathematician proved it was perfectly secure, as opposed to

merely prohibitously difficult to break. It is a very simple substitution cypher, but
with the twist that the key is the same length as the message. As a result each letter
has its own unique (and random) rotation, making the encoded message proof against
any sort of analysis without the key. The final result is a pair of random-looking
message (one the encrypted message, one the key used to encrypt it) of the same
length, either of which cannot be broken or analysed in any way on its own, but which
can easily be decoded once the two are brought together.

One-Time Image extends the principle to that of images. First, the source image is
converted to black and white (not greyscale, true black and white with pixels of only
these two different colours).

Secondly a key image is generated, of the same dimensions, where each pixel is
randomly set to white or black. Third, the original image is encrypted using this key -
if the pixel in the key is white then the corresponding pixel in the original image is
used in the encrypted image, whereas if the key pixel is black then the corresponding
pixel in the original image is flipped (black to white, white to black) for the encrypted
image. The result is two images of apparently random black and white pixels.

Finally, each image is then doubled in size - each pixel becomes a 2x2 square of
pixels. Black pixels have black pixels in the top-left and bottom-right corners while
the other two pixels are while, while a white pixel in the original image produces the
opposite 2x2 square. These enlarged images are the final, encrypted ones - they have
the appearance of random static, or snow, and neither one can be decrypted on its own
no matter how powerful the computer or clever the analyst..

The trick is that, when printed onto transparencies and one is laid over the other (the
order is irrelevant), the original image is suddenly revealed! This is because a black
pixel in the original image produced pixels of different colour in the key and
encrypted images (one black, one white). Since these black and white pixels became
2x2 squares with two black and two white pixels, when overlaid all four pixels in the
square become black. However, a white pixel in the original produced pixels of
matching colour in the key and encrypted images (both black, or both white). Hence
the 2x2 squares in the final images are identical, and when overlaid half the pixels
remain white. Hence, when you look at the image from anything but very short range,
these 2x2 squares look grey while other look black.

If you don't have a printer and transparencies to hand, you can demonstrate it for
yourself using Photoshop or some other image-manipulation program - take one of the
output images and import/paste the other on top of it as a new layer and you'll see
your original image.

THE PROGRAM

You can download the program with source code here. It is released under the GPL, so you're free to
use, alter and redistribute it. The interface is pretty basic: Java's not my favorite language, though I can
get by with it (I used it in this case for its image handling capabilities). A readme file with various
information is included, along wtih makefiles, directions to run it, etc.

What's it useful for? In the world of serious cryptography - not much. In practise it
makes a lot more sense to use the same principles to produce a pair of USB keys
rather than messing around with transparent sheets of printed static. And even then the
one-time pad is mostly a curiosity: its lack of authentication, need to transport the
message securely, need to dispose of the keys securely after use and other problems
means its usage is limited.

It is, however, a useful tool for demonstrating the principle behind the one-time pad
and cryptographic principles in general, since the decoding is automatic,
instantaneous and very visual. The fact that transparencies are involved also makes it
perfectly suited for use with overhead projectors if being formally taught. It's also fun
to just play around with - I find it fascinating, the way two nonsensical images
produce a meaningful one when overlayed (but maybe that's just me). You could also
use it for activities like orienteering, by giving one transparency to a team and leaving
the other at the point they need to locate (it'd be like a high-tech equivalent of those
hole-punches they normally use).

